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Abstract 
We quantify the effect of different information channels on aspiring PV adopters' decision period, the 
time between when a household begins to seriously consider PV and the date when they sign a contract to 
install a PV system. Using data from a household-level survey of solar PV owners in Texas, we find that 
the length of the decision period depends on the information context (e.g., leasing) and on special 
opportunities to learn (e.g., peer effects). We also find that peer effects operate via two main channels, 
each of which reduces the decision period. First, the largely psychological influence (increased 
confidence and motivation) that accrues simply through witnessing PV systems in the neighborhood. And 
second, the more economic influence in the form of highly relevant and trustworthy information—an 
economic good—that accrues through peer-to-peer communications. The psychological channel (of peer 
effects) operates independently of, and is usually a precursor for the economic channel. But the economic 
channel reduces the decision period by twice as much as the psychological channel. Based on these 
findings, we outline an integrated information system that could be effective in reducing uncertainties and 
non-monetary costs of adopting PV, and thus, might help accelerate the adoption of PV. 
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1.  Introduction 

Largely due to a combination of attractive federal, state, and local financial incentives, 

over the last few years the adoption of solar photovoltaic (PV) technologies has dramatically 

accelerated in the residential sector in several states in the U.S., particularly in California, New 

Jersey, Colorado, and Texas. Yet, current adoption levels in this (residential) sector are below 

2% of the market potential (Paidipati et al., 2008). Several incentive programs are nearly a 

decade old, and still several states and utilities are not clear what the most effective and efficient 

incentives schemes should look like. Many of these programs are in a state of continual flux. 
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Clearly, PV technologies not only have a tremendous scope for broader adoption but also face 

substantial challenges in a world of uncertain policy environment, energy markets, and intense 

technology competition. 

Information is paramount in the adoption of capital intensive consumer technologies like 

PV. A large body of research within the diffusion of innovations framework (DoI) has 

established that technologies that diffuse widely are sequentially adopted by different adopter 

categories (innovators; early adopters; early majority; late majority; and laggards) that vary in 

their socioeconomic status, risk aversion, and opinion leadership (Rogers, 2003). Digging deeper 

into the consumer decision-making process, DoI has shown that there are additional critical 

elements involved in the diffusion of technologies than just the financial aspects. According to 

DoI, five intrinsic characteristics of innovations guide an individual’s decision to adopt or reject 

an innovation—relative advantage, compatibility, complexity, observability, and trialability. 

Evaluation of a technology along these dimensions is an information (and time) intensive 

process, as it involves information gathering and comparison with alternative investment options 

before a final decision is made. The higher risk associated with capital intensive technologies 

like PV makes accurate information in this context even more valuable to consumers. Such 

purchase decisions are made only so often, and any mistake in judging the value of such 

technologies comes with high cost. As pointed out by Nelson (Nelson, 1970), in part the capital 

intensive nature of these technologies acts as a selective guide in the development of the 

associated information channels that support the consumer decision-making process. In 

particular, these information networks typically have either a "brand" bias—only a few brands of 

a particular product/technology are supported because of brand reputational effects—or, they 

exhibit strong overlaps with interpersonal networks (family, friends, neighbors). In general, the 

more complex, novel, and expensive the technology, the more intense is the consumers' 

information requirement.  

Although the market and institutional context, including price, tax incentives, local 

rebates and so on, greatly affect market development, social and communication networks that 

provide product-relevant information are also key determinants in the actions of individuals who 

make up the socio-technological system. Extensive DoI research strongly suggests that diffusion 

of new consumer technologies is fundamentally a social process, and that  “the heart of the 



3 
	  

diffusion process consists of interpersonal network exchanges and social modeling by those 

individuals who have already adopted an innovation to those individuals who are influenced to 

follow their lead” (Rogers, 2003).  

Perceived uncertainties and non-monetary costs (UNMCs) associated with the adoption 

of new technologies are key to understanding why social and communication networks are so 

important for the diffusion of technologies. In the context of PV, for example, the “value of PV” 

is a characteristic of the individual adopter and takes into account not only the monetary cost of 

the technology, which includes both equipment and installation costs, but also non-monetary 

costs, such as information search costs and uncertainty about the future performance, operations 

and maintenance requirements, and perceptions of quality, sacrifice, and opportunity cost 

(Zeimthaml, 1988; Faiers & Neame, 2006). To reduce their UNMCs people rely on the personal 

evaluation of the technology by those who have already adopted it (Rogers, 2003). Since direct 

experience pre-purchase through trialability is limited, especially for high capital cost 

technologies, much information gathering is done through “trial by others”, utilizing 

interpersonal networks (Labay and Kinnear, 1981). Thus, information flows from existing 

adopters to potential adopters, making the diffusion of technology a social process (Rogers, 

2003). As more people become adopters the observed performance of the technology spreads 

through the networks at a faster pace, further reducing the uncertainties associated with adopting 

the technology. Effectively, the actions of previous adopters have peer effects that influence non-

adopter’s attitude and behavior toward the new technology. These effects have been studied 

recently in vehicle purchases (Narayanan and Nair, 2011; Bradlow et al., 2011; Axsen and 

Kurani, 2009), and a recent study suggests that peer effects could be playing a significant role in 

the adoption of PV by residential consumers in California (Bollinger and Gillingham, 2011). 

This social learning process and the concomitant knowledge spillovers reduce the costs and 

uncertainties associated with adopting a new technology. This key function of social networks—

namely, the reduction of UNMCs associated with the adoption of new technologies—is believed 

to make the diffusion of innovations an inherently social process. 

Just as markets and institutions can fail to support the diffusion of new technologies, 

network failures in the communication and interpersonal networks due to lack of connectivity 

among the actors within the network could have a chilling effect on technology diffusion 
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(Jacobsson, 2000). Consequently, even if favorable contextual factors (such as high electricity 

prices and local incentives for PV) are present, if the connectivity within the underlying 

information networks is poor, technology diffusion might not be sustained. 

Important as it is, the role of information networks and peer effects in the diffusion of 

residential PV is relatively unexplored. While the financial barrier to PV diffusion has been well 

documented in the literature (Timilsina et al., 2011; Guidolin and Mortarino, 2009; Margolis and 

Zuboy, 2006), the role of information networks and peer effects in overcoming non-financial 

barriers to PV adoption remains understudied (Margolis and Zuboy, 2006). The limited and 

coarse understanding of these often critical factors have largely failed to generate actionable 

policy and marketing insights. 

In this paper we use a new dataset to study the structure of information networks 

associated with the adoption of PV. Specifically, we characterize the information networks that 

potential adopters employ to mitigate UNMCs of PV adoption: what uncertainties and barriers 

do potential adopters face? What information sources (other PV owners, websites, electricity 

utilities, government reports, etc.) do consumers use to inform their decision to install PV? How 

valuable are these different sources? How do social networks and interactions influence the 

adoption process? We also identify those factors that are most effective from the consumers' 

viewpoint in reducing UNMCs, and hence the length of the decision period. Our analysis is 

based on data from a survey on the adoption experience of PV owners in Texas. Descriptive 

statistics are used to gain insight into the decision process for PV installation and for hypothesis 

generation. Finally, we present a multivariate regression model describing PV adopters' reported 

decision period—the length of time (months) between the beginning of serious consideration of 

PV and the final decision (signing of contract) to install PV—as a function of information-related 

variables. 

Policy and marketing strategies that will reduce the impacts of UNMCs on potential 

adopters, thereby accelerating the rate of PV adoption, are inferred from this research.  The 

keystone of these recommendations is the establishment of state-specific partnerships to better 

internalize the benefits of information sharing between current owners and potential adopters and 

serve as a central hub of information on solar PV technology.  
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2.  Data and Methodology  

Our analysis uses a new household-level dataset we have built through a survey of 

residents who have already adopted PV. The survey sought to study the experience in selecting 

and installing a solar PV system by those who have installed PV at their homes. Only households 

that have already adopted PV were part of this survey. The survey consisted of sixty questions, 

which were organized in the following seven sections: (i) system details (ii) decision-making 

process (iii) financial aspects (iv) sources of information (v) expectations/evaluation (vi) 

environmental attitude (vii) demographics. A summary of the overall findings from the survey is 

also under preparation (Rai and McAndrews, 2012). 

The survey was administered electronically (online) in Texas during August-November 

2011. The total number of complete responses received was 365, or about 40% of the 922 PV 

owners contacted. In addition to complete responses, there were another 41 partial responses. 

The PV systems of these respondents were installed between 1999 and 2011, with a vast majority 

between 2008-2011. The majority of respondents were located in the Austin and Dallas-Fort 

Worth regions with smaller numbers of respondents located in and around Houston, Temple, 

Waco, and Tyler/Longview. Although we do not have the exact figures, we estimate from Texas 

solar program data that our sample of received complete responses (365) represents about 20% 

of the entire target population (residential PV adopters) in July 2011 in the areas where we 

conducted the survey. A geographic summary of responder locations is shown in Figure 1 at the 

zip-code level. 

[FIGURE 1 ABOUT HERE] 

The length of time (months) between the beginning of serious consideration of PV and 

the final decision (signing of contract) to install PV—the decision period (DP)—was modeled 

using ordinary least squares (OLS) multiple regression. Referenced survey questions are listed in 

Appendix A, Figures A.1-8. The survey data contains a mixture of continuous and categorical 

(ordinal) data. Categorical data is largely 5-grade Likert scale-based (e.g. Strongly Agree, Agree, 

Neutral, Disagree, Strongly Disagree), with some variables having potential cardinal uncertainty 

(variable magnitude between successive points). For this reason, either the categorical variables 

were coded as binary values during modeling, or individual Likert items measuring the same 
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attitude were combined (i.e., "summed by section") where appropriate to enhance the continuity 

of the variable, potentially allowing for more robust parametric analysis (Norman, 2010).  

Summed items in the Likert scale create a measure of attitudes, and must satisfy 

consistency and comparability criteria between items (Mainieri et al., 1997). There are problems 

applying parametric statistics to single questions (Likert items)—for example, when estimating 

central tendency, strong disagreement, and strong agreement are averaged, providing the 

misleading impression of neutrality (Gob et al., 2007). However, use of the median for central 

tendency may have the related problem that different patterns of response may have the same 

median score.  For this reason, where appropriate, multiple indicators are given. Significance 

between Likert-items was tested using Chi-Square tests, or Kruskal Wallis ANOVA. Where 

parametric statistics were used, the data satisfied the necessary assumptions of cardinality.   

3. Descriptive Results and Hypotheses 

3.1 Uncertainty, Non-monetary Costs, and Decision Time 

According to survey responses, information on PV systems is widely available to 

potential adopters. The distribution of responses to a Likert item regarding adopters’ experiences 

finding dependable PV information is right-skewed, indicating that information was relatively 

easy to find (mean 2.52, median 2, skewness 0.31, std. deviation 0.95). At the end of the decision 

period (DP)—the time period between when a household begins to seriously consider PV and the 

date when they sign a contract to install a PV system—most respondents seem to have developed 

a good understanding of the technical as well as financial attributes of PV. In other words, the 

necessary information is out there. 

While there is no dearth of PV-related information for potential adopters, the relevance 

and trustworthiness of information continues to be an issue. The left-skewed distribution of 

survey responses reflecting time spent researching PV (mean 3.38, median 3, skewness -0.11 std. 

deviation 0.96) suggests that the respondents spent significant amount of time and effort sifting 

through all this information during their DP. Further, as shown in Figure 2, the average reported 

DP was 8.9 months (median of 6 months).  

[FIGURE 2 ABOUT HERE] 
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Analysis of an open-ended question regarding the information-search experience further 

confirms that while information is easily available, potential adopters are not quick to trust it. We 

find that prospective adopters rarely complain about too little information; instead they face an 

information overload from a variety of sources, not all of which are trustworthy. This makes it 

difficult for adopters to distill information into a coherent picture showing how residential PV 

will affect them. As a way to improve the value of information that is available many 

respondents expressed a desire for a "centralized" information source hosted by government or 

electric utilities. 

In agreement with prior research in other areas of behavior change (Dietz, 2010), these 

insights suggest that trustworthiness of the information source is a key factor in determining DP. 

That is, any given level of information certainty (about PV) desired by a potential adopter can be 

achieved faster when information from more trustworthy sources is accessible. If trustworthy 

information is not found, significant uncertainty may remain even after a lengthy DP (this may 

be termed as the “residual uncertainty”). Accordingly, we hypothesize: 

Hypothesis 1: PV owners who need greater information certainty have longer DP. 

3.2 Peer Effects in the Adoption of Residential PV 

 Peer effects are known to play an important role in the process of diffusion of innovations 

(Gerowski, 2000; Rogers, 2003). Typically consumers go through an evaluation period wherein 

they estimate the value, including both monetary costs as well as UNMCs, of the technology in 

question. Due to the limited trialability of PV systems, potential adopters must overcome 

UNMCs through “trial by others.” Thus, as elaborated above in Section 1, information passes 

from previous adopters to potential adopters through observation and communication. In the 

process, as the number of PV owners rises, increasing the potential for exchanges between 

existing PV owners and potential adopters, peer effects should become increasingly observable 

in the decision process of PV adopters. 

 The localized nature of these effects and the early stage of PV diffusion in Texas make it 

difficult to study them at the macro level—even as overall adoption increases in the population, 

individuals may still be among the early adopters to install in their neighborhood, making utility, 

state, city, and even zip-code level data somewhat problematic. One way out of this issue is to 
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look for pockets of areas that have a relatively high density of PV adoption. Austin, Texas is one 

such area within the sample, and for the remainder of this subsection we focus on data from only 

Austin. Within the Austin sample we further scrutinize data from the Mueller community. This 

700 acre redevelopment project, sited at the location of an airport closed in 1999, will eventually 

include more than 4900 homes and 4.5 million ft2 of commercial and office space. PV 

installations started soaring in Mueller since 2009. In August 2011, when the survey 

administration began in Mueller, about 10% homes in the community (of about 650 homes) had 

already installed PV systems (as of this writing the penetration level is close to 30%, making 

Mueller one of the densest pockets with PV installations at the neighborhood level in the U.S). 

 In this paper, we define peer effects as the influence of PV systems in the neighborhood 

on the final decision of a potential adopter to install PV. Further, a house's neighborhood is 

defined as the area within a five to ten block radius from it. Note that this definition of peer 

effects focuses solely on the attitudinal and behavioral stimulus that seeing PV systems in the 

neighborhood induces; it excludes the impact of contact with other PV owners, which, as 

described later, is captured separately. This choice of definition was driven by our intention to 

independently quantify the impact of these two factors. 

 We measure peer effects at two different locations in the survey instrument. First, early 

on in the instrument, we ask respondents about the level of importance of PV systems in the 

neighborhood in their final decision to install PV. Second, midway through the instrument, we 

revisit the peer effects topic in more details through a series of four 5-grade Likert scale-based  

statements: “PV systems in the neighborhood motivated me to seriously consider installing one,” 

“Seeing other PV systems in my neighborhood gave me the confidence that it would be a good 

decision to install one,” and “Without the PV systems in my neighborhood, I would not have 

installed a PV system”.1  

 Most of the PV adoption in Austin has been sparse between 2004-2008, and so we find 

only weak evidence of the influence of peer effects during this period. But where PV systems are 

more densely located, such as in Mueller, we do find strong peer effects. Largely because of the 

inclusion of this group (Mueller) the percent of respondents who state that the influence of PV 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 Responses to these statements track each other closely, suggesting that the netting term “peer effects” has value. 
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owners in the neighborhood was at least “moderately important” in their final decision to install 

has been increasing rapidly since 2009 in these areas (Figure 3). Slicing the data a little 

differently further supports these findings. Figure 4a shows the influence of peer effects in 

Austin excluding data from Mueller; Figure 4b shows the influence of peer effects in Austin 

including data from Mueller. The inclusion of Mueller data shows the tremendous impact that 

peer effects have had on PV adoption in this community. In sum, these insights suggest that peer 

effects reduce UNMCs by providing motivation and confidence to potential adopters. As a result, 

we can expect that reduced UNMCs owing to peer effects should be manifested as a shorter DP. 

Further, we might expect peer effects to increase with the number of systems in the 

neighborhood. Accordingly, we hypothesize: 

Hypothesis 2a: PV owners who reported greater peer effects have shorter DP. 

Hypothesis 2b: PV owners with more systems in their neighborhood experience greater 

peer effects (and, thus, have shorter DP). 

 

[FIGURE 3 ABOUT HERE] 

[FIGURE 4a ABOUT HERE] 

[FIGURE 4b ABOUT HERE] 

 

3.3 Contact 

The next level of information gathering to reduce UNMCs during the decision-making 

period involves direct contact (discussion) with existing PV owners. As discussed above, in this 

paper we separate this effect from peer effects, which we define as only the influence of PV 

systems in the neighborhood, excluding the influence that accrues through direct contact. Direct 

contact provides the opportunity to seek information that is directly relevant to the decision 

maker. As such, we expect direct contact to be one of the most effective information channels in 

reducing UNMCs.  
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Among the respondents 90.5% agreed or strongly agreed with the statement, “Talking to 

owners of PV systems was useful or would have been useful.” Thus, from a potential adopter's 

viewpoint existing PV owners represent a valuable source of trustworthy information, and their 

collective experiences form a stock of knowledge from which potential adopters can learn, 

reducing UNMCs. This shows, in accordance with DoI, that contact is a way of accessing 

trustworthy information if such information is not available otherwise (for example, through a 

trusted government website). 

Of the respondents who contacted other PV owners prior to installation 57% agreed or 

strongly agreed that, “My discussions with PV owners profoundly improved the quality of 

information” (Likert item mean 2.42, median 2.00, skewness -0.24, standard deviation 0.93). 

Further, as shown in Figure 5, we find that potential adopters who had a difficult time finding 

dependable information are more likely to disagree with the statement, "Talking to other owners 

is unnecessary" (χ2 p < 0.001).  These same adopters were more likely to say that they would 

have liked to talk to other PV owners, but could not find any (χ2 p < 0.02). This suggests that 

direct contact is perceived as an effective channel for reducing uncertainty: potential adopters in 

need of information would like to access the stock of knowledge formed by the experience of 

existing owners.  

[FIGURE 5 ABOUT HERE] 

	  
Further we classify direct contacts based on if those contacts were with PV owners in the 

neighborhood or outside the neighborhood. Essentially, we divide the sample into four groups: 

those who had no contact with other PV owners before installation, but were aware of other PV 

systems in their neighborhood (NCN); those who had contact only outside the neighborhood 

(HCO); those that had at least one contact within the neighborhood (HCN); and, those who 

neither had any contact with any other PV owner nor were aware of any PV systems in the 

neighborhood (NN). As demonstrated in Figure 6, we see that the impact of peer effects on these 

groups is different. We also note that peer effects seem to be the strongest for the HCN group. 

This suggests that there is a dual benefit for this group: not only are members of this group 

influenced by peer effects, but they also gain valuable information when they reach out to other 

PV owners in the neighborhood. Accordingly, we hypothesize: 
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Hypothesis 3: PV owners who had direct contact with other PV owners in the 

neighborhood (the HCN group) will have the shortest DP compared to all other groups. 

[FIGURE 6 ABOUT HERE] 

	  
3.4 Buying vs. Leasing 

While there is need among potential adopters for the quality of information provided by 

direct contact with other owners, this need, and thus the utility such contact provides, is not 

uniform across the spectrum. For example, the solar leasing model makes information gathering 

for potential adopters redundant along several dimensions, especially regarding performance and 

guarantee of the PV system (Mont, 2004; Shih and Chou, 2011). That is, those who lease do not 

spend as much time researching any other attribute of solar but finances. This is consistent with 

the fact that typically performance, and operation and maintenance (O&M) of the equipment is 

covered under the lease agreements; so these aspects do not concern leasers much. In our survey, 

on average, compared to buyers of PV systems leasers report spending less time researching (χ2 p 

< 0.01), and report easier availability of dependable information (χ2 p < 0.02). Further, compared 

to buyers their average DP is lower by about 2 months (mean 7.34 months, median 6, std. 

deviation 0.99). Consistent with all this, among leasers 87% agree or strongly agree that talking 

to other PV owners is unnecessary. These insights suggest that the form of ownership is expected 

to impact DP because different ownership models impose different UNMCs on potential 

adopters. In particular, the UNMCs associated with the leasing model are inherently low. That 

should lead to a shorter decision period, or equivalently to faster adoption of PV. Accordingly, 

we hypothesize: 

Hypothesis 4: Leasers of PV systems have shorter DP than buyers. 

 
4. Modeling the Decision Period 

While descriptive statistics provide much insight, a full understanding of the factors 

influencing decision times necessitates multivariate analysis. Based on Hypotheses 1-4, variables 

for intensity of information required (InvestVIEI), peer effects (PeerEfSum), neighborhood 

contact (HCN), and leasing (Lease) were created to model DP, the length of a PV adopter's 
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decision period. Control variables were added for residual uncertainty (MnPRsh), number of 

contacts (Own_Cont), and adopters with hallmark of "innovators", who, for idiosyncratic 

reasons, appear to demand very little information (Innovators). We modeled DP (denoted by the 

variable Cons_Mo) in equation 1 as: 
 

!"#$_!"! = !! + !!!"#$%&'!(!! + !!!""#$%&'(! + !!!"#! + !!!"#$"! + !!!"#$%ℎ!
+ !!!"#$%ℎ!

! + !!!""#$%&#'(! + !!                                                                                                                             (1) 

 

Variables are listed in order, and are defined in Table 1. 

[TABLE 1 ABOUT HERE] 

4.1 A Note on the Control Variables 

Post-research, or residual uncertainty, measured by MnPRsh, is an indirect measure of the 

effectiveness of the research period. Effective research will create certainty regarding value, and 

yield low UNMCs at the time of installation. MnPRsh is the sum of Likert items regarding 

understanding of installation, warrantee, maintenance, financial aspects, and impact on home 

value. These Likert items demonstrated a high degree of equidistance and symmetry and fulfilled 

the proportional odds assumption. This variable was transformed to create a second-order 

polynomial to better represent its curvilinear relationship with DP (this is further discussed in 

Section 5). MnPRsh and its square MnPRshSq are individually significant (P < 0.0001) and 

jointly significant (P < 0.0001). Both were centered by mean-subtraction (the mean and median 

of the variable were roughly identical: 3.03 and 3.00, respectively) to reduce variance inflation 

factors, as discussed in the diagnostics section. Holding all other factors constant, responders 

who reported very low or low residual uncertainty (i.e., small values of MnPRsh) have slightly 

higher decision times on average than those who reported middling uncertainty—likely 

reflecting the time investment required to reduce UNMCs to low levels.  Holding all other 

factors constant, responders who reported very high residual uncertainty (i.e., large values of 

MnPRsh) have much higher consideration times on average than those who report middling 

uncertainty. This is indicative of significant difficulty accessing reliable information, leading to a 

relatively unsuccessful research period. By measuring residual uncertainty, the control in effect 
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captures those aspects of the adopters' information search process that are not explicitly modeled 

through the explanatory variables. 

Ceteris Paribus, every additional owner contact (in or outside the neighborhood) might 

be expected to increase DP. This can be explained by consideration of what each additional 

contact means for a potential adopter: if one contact is enough to reduce UNMCs to the threshold 

of adoption, the potential adopter will not seek additional contacts. Potential adopters with large 

number of contacts either did not get all the information they need, or feel the need for the 

increased trust gained by redundancy. This takes time, increasing DP. So we control for the 

number of owner contacts (Own_Cont).  

An additional variable, Innovators, controlled for respondents who did not think talking 

to others was useful and experienced no peer effect; and those who bought their system, did not 

experience peer effects, and had decision times under three months. In effect, this variable 

controls for the "true innovators"—those who were already convinced about adopting PV. As 

discussed in Section 5, this control variable also reduces heteroskedasticity associated with some 

of the explanatory variables. 

4.2 Regression Results 

Figure 7 displays the results of the regression.  The model explains about 24% (Adj. R2  = 

0.24) of the variation in DP for PV owners. Despite this, the root MSE (standard deviation) of 

the model is high (8.00), limiting its predictive potential. As such, the model is more useful as a 

descriptor of the components of the information channels associated with solar PV adoption that 

impact adopters' UNMCs and the decision process, rather than a predictor of DP for specific 

potential adopters. 

[FIGURE 7 ABOUT HERE] 

Installing PV for financial reasons requires more certainty, and trustworthy financial 

information may be the most difficult to find.  So high uncertainty regarding financial aspects of 

PV installation can drive up decision times. On average, respondents who reported that their 

evaluation of solar as a financial investment was very important or extremely important to their 

decision to install PV (InvestVIEI) took 2.7 months longer to decide, holding all other factors 
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constant (Figure 7). Therefore, we find support for (fail to reject) Hypothesis 1: PV owners who 

need greater information certainty have higher DP.2  

The positive coefficient for peer effects (PeerEfSum) demonstrates that peer effects 

reduce decision times (P < 0.008). An increase of one on this scale indicates movement toward 

the “strongly disagree” (that peer effects were important) pole of the Likert scale measuring 

reported peer effects (Appendix A, Figure A.8).  This variable uses the section sum average 

method (Mainieri et al., 1997), as the individual Likert items are symmetrical with roughly 

equidistant points (as measured from slope coefficients of individual binary variables and 

fulfillment of the proportional odds assumption).  On average, a one unit decrease on the Likert 

scale toward "agree" (i.e., stronger peer effects) results in a decrease of 1.5 months between 

initial consideration and installation of PV. Thus, we find support for (fail to reject) Hypothesis 

2a: PV owners who reported greater peer effects have shorter DP. 

While the reported number of systems in the neighborhood (PV_in_Nei) was not 

significant in the model and was removed (P > 0.1), this is likely due to the more direct measure 

of the peer effects variable (PeerEfSum) combined with the importance of neighborhood contact 

(HCN). Neighborhood systems in and of themselves do not decrease DP, but rather it is the peer 

effects they produce and the potential for contact they engender that is important.  Therefore, it is 

likely that the impact of PV_in_Nei operates through PeerEfSum and HCN. Indeed, upon 

modeling PeerEfSum we find that PV_in_Nei is the most significant explanatory variable 

generating peer effects.3 Thus, we find partial support for Hypothesis 2b (PV owners with more 

systems in their neighborhood have shorter DP), in that number of systems in the neighborhood 

is linked to peer effects and contact, which reduce DP. 

On average, while holding all other factors constant, having contact with a neighborhood 

PV owner prior to installation (HCN) decreases decision time by 4.6 months (P < 0.004). Based 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  We are performing additional tests for this hypothesis using EnvVIEI with the contention that those who report 
environmental concern as very or extremely important in their decision to adopt PV would have shorter DPs 
(because, presumably, they do not need as much information); and using HighInc with the contention that the 
information requirements of those in the higher income brackets is also lower than the average, so their DPs will be 
lower.	  
3	  Controlling for Lease, InvestVIEI, and Innovators variables, each additional system in the neighborhood results in 
movement toward the “strongly agree” (that peer effects were important) pole (see Appendix A, Figure 8), and was 
highly significant (P<0.0001,β=0.05). Environmental variables were not significant and were removed from the 
model.	  
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on these results, we find support for (fail to reject) Hypothesis 3: PV owners who had direct 

contact with other PV owners in the neighborhood will have the shortest DP compared to all 

other groups. Recall that we separate the impact of peer effects and direct contact in the model. 

A potential adopter in the HCN group likely first experiences peer effects (motivation and 

confidence in PV induced by seeing other systems in the neighborhood) and then follows up with 

direct contact with other PV owners in the neighborhood. So the overall impact of PV systems in 

the neighborhood for the HCN group is the combined weight of peer effects and of direct 

neighborhood contact. Dropping the peer effects measure from the model yields a coefficient for 

this combined effect—the full peer effects—of -6.67 months (P < 0.0001).  

To further understand the impact of different types of social influences on adopters' 

decision period, we added variables for contact only outside the neighborhood (HCO) and for 

neighborhood systems but no direct contact (NCN) to the model (see Figure 6). On average 

holding all other factors constant, HCO decreased DP (β=-1.41) but was not significant (P > 

0.35). NCN also decreased DP (β = -1.07) but was not significant (P > 0.45) either. Recall that 

the NCN group has systems in the neighborhood, and so is likely to experience peer effects. It 

might be possible then that in the model that includes both NCN and PeerEfSum the coefficient 

for NCN is being captured through PeerEfSum. Interestingly, adding the NCN and HCO 

variables while dropping the peer effects variable (PeerEfSum) from the model increased the 

coefficient of NCN (β = -2.08) and significance (P = 0.15) as well as of HCN (β = -7.71, P < 

0.0001), strengthening our claim that peer effects (as defined here) occur primarily through 

observation.   

While holding all other factors constant, on average leasing PV decreases consideration 

time by 2.23 months (P < 0.047). Thus, in addition to the already understood benefit of the 

leasing model, namely, no upfront capital cost of PV ownership (Mont, 2004; Shih and Chou, 

2011; Drury et al., 2011), we also show that the leasing model significantly reduces UNMCs 

associated with PV adoption, leading to faster adoption rates as reflected in a lower DP for 

leasers. That is, we find support for (fail to reject) Hypothesis 4: Leasers of PV systems have 

shorter DP than buyers. Our findings suggest that the dual benefits of the leasing model—no (or 

low) upfront capital costs and significantly reduced UNMCs—together explain the exponential 

burst in the growth of the leasing business model in the last few years. 
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Sensitivity testing also revealed that if the variables for residual uncertainty, MnPRsh and 

MnPRshSq, are dropped from the model, the Lease variable becomes more significant (β = 2.74 

P < 0.03).  This suggests that some of the variation in decision times attributed to leasing in the 

sensitivity model without a residual uncertainty term is attributed in the full model to MnPRsh, 

and MnPRshSq due to low levels of multicollinearity between leasing and residual uncertainty. 

Because leasers have inherently lower UNMCs, it is more likely that they will have lower 

residual uncertainty when compared to buyers. This also supports using residual uncertainty as a 

control variable in our model. 

 

5. Model Diagnostics and Sensitivity (PRELIMINARY) 

The length of the survey created the potential for larger number of potential variables to 

be added to the model, as well as the potential for large uncertainty in model specification. The 

variables selected in the final model were tested for robustness through a best subsets procedure 

from Beal (2005) utilizing the SAS® system for minimization of Akaike’s Information Criteria 

(AIC).  Multiple rounds were used due to the fact that the SAS® system best subsets procedure 

is limited to ten variables per round. This procedure was repeated over 124 rounds, with 1024 

models simultaneously evaluated each round. Demographic variables, environmental beliefs, and 

system specifications (size, final cost, etc.) could not be shown to significantly influence DP. The 

main explanatory variables resulting from Hypotheses 1-4 (InvestVIEI, PeerEfSum, HCN, and 

Lease) were consistently selected through the (optimal) best subsets procedure.  This procedure 

gives us a high degree of confidence in the model. 

In early stages, with the inclusion of only HCN, Lease, PeerEfSum, Own_Cont, and 

InvestVIEI based upon Hypotheses 1-4, the model displayed heteroskedasticity among 

independent variables. Heteroskedasticity was tested using White’s test (White, 1980). Initial 

Chi-square test statistics led to rejection of the null hypothesis (H0: Variance of the residuals is 

homogenous). Examination of residual plots showed increasing variance in the PeerEfSum 

variable. The addition of two control variables, MnPRsh, and Innovators, decreased 

heteroskedasticity beyond significance (α = 0.05, P < 0.15). The Innovators variable controlled 

for respondents who bought their system, had a decision period of less than three months, 

experienced no peer effects, had no contact with other owners, and also disagreed that talking to 
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others was useful or would have been useful. In effect, this variable controls for the "true 

innovators"—those who were already convinced about adopting PV, perhaps for some other 

specific reason(s). As discussed in Section 4.1, MnPRsh controls for residual uncertainty. The 

addition of these control variables did not significantly alter variable coefficients or P values (Δβ 

< 0.1, ΔP < 0.01). 

While these controls do much to reduce heterogeneity in residual variance, some 

variables, such as Lease, HCN, PeerEfSum, and Own_Cont continue to display greater residual 

variance where the variable effect is lowest (i.e. Lease = 0; PeerEfSum = 5) as is shown in Figure 

8.  This suggests that other influential variables, though perhaps with only marginal significance, 

may be absent.  

[FIGURE 8 ABOUT HERE] 

OLS regression models must satisfy the linearity requirement for the coefficients. The 

observed-to-predicted plot for the model suggests that full inclusion of the outliers (those with 

very large DP) could be problematic. For the results reported here (Figure 7), this has been 

mitigated by the removal of three large outliers (DP > 60). While values are fairly evenly 

distributed around the fit line for most observations, outliers still have a fair amount of leverage 

in the model. This can be seen in the Cook’s D plot (Figure 8). The sample has been ordered 

according to DP, demonstrating the increasing leverage (Cook’s D > 0.4) of the responders with 

the longest decision times. This effect is seen again in the histogram of the residuals (Figure 9), 

which has positive skew, suggesting that the coefficients may be slightly biased.  

[FIGURE 9 ABOUT HERE] 

Multicollinearity is not a major problem in this model, as is demonstrated by the low 

variance inflation factors (VIF) shown in Figure 7. Variance inflation between MnPRsh and 

MnPrshSq was reduced through mean centering as described in Section 4.  

6. Conclusion 

In this paper we have studied the effectiveness of different information channels in 

reducing uncertainties and non-monetary costs associated with the adoption of residential solar 
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PV. We built the data for this analysis through a survey of residential PV owners in Texas. Based 

on survey responses, we find that potential adopters of solar PV systems invest large amounts of 

time—nearly nine months on average—and effort into researching the technology. Information 

on PV systems was not difficult to access for most respondents, suggesting that the availability 

of information alone does not cause long research times. Uncertainty and non-monetary costs 

remain, even when information is available. This pattern may be indicative of a lack of trust in 

available information. 

Consistent with Nelson’s (Nelson, 1970) view on the role of information networks for 

experience goods, we find that potential PV adopters benefit from and tap into the knowledge 

stock of the existing user base. Our multivariate regression model suggests that leasing, peer 

effects, and contact with neighbors each significantly decreased decision times among survey 

respondents. Among respondents, contact with neighbors before installation was the single most 

effective strategy for speeding decision times. This is because in practice this contact provides a 

double dividend for potential adopters: through peer effects, it first instills interest and 

confidence in the technology and the motivation to find out more; additionally, it also provides 

access to trustworthy information by talking to the neighbors. These results are consistent with 

the Diffusion of Innovations framework, which suggests that peer-to-peer communication is 

critical for increased technology adoption (Rogers, 2003; Bollinger and Gillingam, 2011).  

Our findings go a step further in that we are able to separate and quantify the key 

constituents in the black box of "peer effects". Specifically, we find that peer effects operate via 

two main channels: first, the largely psychological influence (increased confidence and 

motivation) that accrues simply through witnessing PV systems in the neighborhood; and 

second, the more economic influence in the form of highly relevant and trustworthy 

information—an economic good—that accrues through peer-to-peer communication. We find 

that the psychological channel (of peer effects) can operate independently of the economic 

channel and is usually a precursor for the economic channel. But the magnitude of the effect of 

the economic channel is twice as much as that of the psychological channel. 

The benefits of peer effects and neighborhood contact are many, including motivation, 

confidence, convenience, relevance, and, perhaps most importantly, trustworthiness. However, 

this kind of communication is not proactively forwarded by the current system of information 
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available on PV. Our findings hint at the potential structure of an integrated information system 

that could be effective in reducing uncertainties and non-monetary costs of adopting PV, and 

thus, might help accelerate the adoption of PV and broaden the potential market. Such an 

integrated information system would be composed of two main elements. First, a central 

information clearing house, perhaps administered by the US Department of Energy (DoE), that 

would be linked to regions, states, and utility service areas, through a standardized process of 

information sharing across these scales to allow for local information to be available in a 

transparent manner, which would increase the value and trustworthiness of this information. The 

federal-state-local links could be managed via partnerships with universities, utility consortia, or 

non-profits. Information culled from national research laboratories, federal programs, state 

initiatives, and local utilities could provide users with a one-stop shop for their information 

needs. Access to relevant, location-specific, concise information that has been vetted by a trusted 

third-party entity such as the DoE would most certainly decrease the research component of 

household's decision-making process.  

Second, designing an incentive structure and communication platform for PV that 

maximizes peer effects could provide tremendous leverage. For example, considerable benefit 

could be derived through incentivizing the first few systems in a neighborhood to create a 

knowledge stock for potential adopters. This would initiate the psychological influence of peer 

effects and whet others' curiosity and interest in the technology. A communication platform, 

then, would facilitate peer-to-peer communication, harnessing the strongly effective benefits of 

direct contact. This could take the form of (but is not necessarily limited to) an online social 

platform. Existing PV owners could share their PV ownership experience, and potential adopters 

would be able to connect with the owners in their neighborhood or community.  As this research 

suggests, by increasing peer-to-peer interaction this initiative has the potential to decrease 

individual decision times by over 6 months, or by about two-thirds (HCN coefficient for full peer 

effects). Such an initiative would be relatively cheap and would likely enable accelerated growth 

in the PV market, reducing the burden of support on the government as the residential PV 

industry expands. Overall, our results suggest that combining these two drivers—the indirect 

(psychological) and direct (economic) influence of peer effects—have the potential to create 

positive feedback loops as new adopters are added to the existing base, thereby dramatically 

increasing PV adoption rates.  
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We end by noting where our work needs further research and elaboration. While the 

insights from this work will be useful for the industry and policy makers, additional research in 

this area is needed to develop predictive models. There are still relationships affecting decision 

times yet unexplained in our model (Adj. R2=0.24). Increased geographic and temporal 

granularity would allow more confidence in the application of these results across states and 

communities, and could potentially allow for forecasting of adoption rates based on efficiently 

achievable reductions in the non-monetary costs of technology adoption. 
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Table 1. Description of variables included in the regression model. The output is shown in Figure 7. 

 

	  

	  

	  

Figure 1: Geographic distribution of survey responders.  Size of bubble corresponds to the sample size from each 
zip code. 

Variable

Cons_Mo

Intercept

InvestVIEI

PeerEfSum

HCN

Lease

Own_Cont

MnPRsh

MnPRshSq

Innovators

Binary variable, respondent indicated that financial aspects of PV were very important or extremely important to the decision to install.

Binary variable, whether or not the responder had contact with at least one PV owner in the neighborhood before installation.

The square of MnPRsh.  Together used to estimate the curvilinear relationship of residual uncertainty and DP.

FULL MODEL VARIABLES

Sum of section 2.10, level of agreement with statements regarding post-research uncertainty in performance, operation, maintenance, warranty, 
installation, and impact on home value.  Used as a proxy for "residual uncertainty." Varible in conjunction with MnPRshSq.  Has been centered on the 
mean (3.00).

Binary Variable: Control for individuals with DP < 3 months who did not lease, experience peer effects, have contact with other owners, and disagreed 
that talking to others was useful or would have been useful

Sum of section 4.6, level of agreement with statements regarding neighborhood influence: motivation, confidence and "would not have installed without." 
See Appendix A, Figure 8.

Months responder spent between serious consideration of PV and installation of a PV system (DP).

Months of decision period (DP) when all independent variables are equal to 0.

Number of other PV owners contacted by responder before installation of a PV system.

Binary variable, whether the responder leased the PV system, as opposed to bought.

Explanation
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Time	  passed	  until	  install

Mean 8.892031
Standard	  Error 0.591797
Median 6
Mode 6
Standard	  Deviation 11.67206
Sample	  Variance 136.237
Kurtosis 28.03574
Skewness 4.352249
Range 119
Minimum 1
Maximum 120
Sum 3459
Count 389

Figure 2: Histogram displaying number of months spent between serious consideration of PV and installation. The 
mean value is 8.92, median 6, with skewness of 4.35 and standard deviation of 11.67.    

 

Figure 3: Histogram of responses to the question “How important was the following factor in your final decision to 
install a PV system: Influence of others in the neighborhood with PV systems” for PV adopters in Austin, Texas. 
Note that (i) years before 2008 had few observations (n < 12) and were removed from this figure, and (ii) data for 
2011 is only through July 2011. The Austin sample is used to demonstrate recent growth in peer effects in a single 
geographic region. The recent rapid increase in the influence of neighbors is consistent with the hypothesis that peer 
effects become increasingly influential as the local installed base increases. Peer effects sensitivity to responders 
from the Mueller community are shown in Figure 4a and 4b.  
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Figure 4a: The graph shows the average responses and trends for four Likert items regarding peer effects from 
2005-2011. Earlier years were discarded due to sample size. Width of the line represents number of systems in the 
neighborhood. The graph excludes members of Austin’s Mueller community, while Figure 4b includes all 
responders, demonstrating the effect of high density installations on peer effects.  
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Figure 4b: The graph shows the average responses and trends for four Likert items regarding peer effects from 
2005-2011. Earlier years were discarded due to sample size. Width of the line represents number of systems in the 
neighborhood. The graph includes data for all responders, while Figure 4a excludes members of Austin’s Mueller 
community, demonstrating the effect of high density installations on peer effects.  
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Figure 5: Breakdown of the percent of responders by color according to level of agreement with the statement “I did 
not find it necessary to talk to other PV owners” and by column for “Overall, how would you characterize the 
experience of finding dependable information during the time you were researching PV?” Responders without 
access to information seek to resolve this need through contact.  
 

Figure 6:  Peer effects affect groups differently based on type of contact.  NCN = No contact, systems in the 
neighborhood; HCO = Had contact only outside neighborhood; HCN = Had contact within the neighborhood. 
Kruskal-Wallis ANOVA testing shows significantly different population distributions for “Motivated” (p < 0.001) 
and “Confidence” (p < 0.001). Average number of systems in the neighborhood varies by group: HCN: 9.80, HCO: 
0.29, NCN: 2.43.  Median HCN: 2, HCO: 0, NCN: 1. 
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Figure 7: SAS® output for the model shown in equation 1.  Variables chosen for hypothesis testing and checked for 
robustness via the best subsets selection procedures and model diagnostics described in Section 10. For variable 
descriptions, see Table 1.  Select diagnostic plots are displayed in Figure 8. 
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Figure 8: Residual plots for several variables. Heteroskedasticity has been moderated by the addition of controls, 
discussed in Section 5. While heteroskedasticity is not a problem for the model as a whole, individual variables  
demonstrate some non-uniform variance. 
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Figure 9: Selected diagnostic plots for the full model shown in equation 1. Banding in observed values and residuals 
is the result of responders converging around convenient temporal choices  (3, 6, 12, 24).  The influence of outliers 
is moderated by removal of three outliers (DP>60).   
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APPENDIX A  

Sample Survey Questions 

Note: The numbers before each question refer to section numbers in the original questionnaire, 
and have no particular significance here. 

Figure A.1: Likert item regarding factors behind installation decision. 

 

	  

 Figure A.2:  Likert item regarding length of research time. 
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 Figure A.3: Survey question regarding decision times. Given as numerical response. 

	  

 

 

Figure A.4: Four Likert items regarding contact with other owners (#4). Question regarding number of PV systems 
in the neighborhood (#5). 

 

Figure A.5: Survey question regarding the number of other owners of PV systems who were contacted. 
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Figure A.6:  Likert item regarding access to dependable information. 

 

Figure A.7: Six Likert items regarding residual uncertainty. 
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Figure A.8:  Four Likert items regarding peer effects. 

	  


